Latest Entries »

El Lombricario

La lombriz vive en lechos o cúmulos de desechos que constituyen su casa y su alimento al mismo tiempo. Es evidente que habrá que poner mucha atención en cómo se disponen estos lechos, tarea que constituye la primera fase y la más importante de todo el cultivo.

El mejor sistema consiste en el cultivo al aire libre, en lechos colocados directamente sobre cualquier tipo de terreno (la lombriz no posee al respecto exigencias específicas), sin instalaciones ni estructuras de ningún tipo, del modo más sencillo y menos costoso.

En emprendimientos medianos es posible construir cunas (pueden ser de diversos materiales) donde se llevará a cabo el procesamiento del lombricompost (el compostaje es mejor llevarlo a cabo según lo indicado precedentemente) pues de esta manera se puede controlar mejor la calidad y el proceso del mismo.

En explotaciones familiares con fin huertas propias o pequeños comercios, suelen construirse cunas de madera dura, bloques de hormigón, ladrillos comunes revocados, los aros de hormigón que se utilizan en la construcción de pozos sépticos, etc. tanto para el lombricompost como para el compostaje.

Su tamaño puede alcanzar los 3 m. de longitud por 1 m. de ancho y unos 40 cm. de altur, lo que nos dará una excelente superficie para obtener nuestro humus de lombriz.

En los casos en los que se hubiera impermeabilizado el fondo, debe preveerse algún sistema de drenaje para la eliminación de los lixiviados (líquidos resultantes de los frecuentes riegos). Para el caso de un emprendimiento un poco mayor con vistas a una explotación de índole comercial, se presenta un simplificado esquema tipo de disposición de los lechos:

Nótese que los lechos se disponen en forma paralela y continua. Esta alineación se justifica si el objetivo es lograr que las lombrices californianas se pasen de cama a medida que van consumiendo el alimento que posee la pila que las aloja.

Luego es posible cosechar el humus a medida que se marchan en busca de alimento nuevo. A estos lechos es conveniente prepararlos sobre plástico y darles la misma cobertura (o con medias sombras o paja) que mantenga la humedad y proteja la pila de los predadores.

En casos de emprendimientos realmente grandes, es necesario preveer calles de ingreso de camiones, tanto para traer el alimento como para retirar el humus.

En algunos casos, y a los efectos de permitir un traslado más cómodo de las lombrices de una cama a otra, o para un mejor aprovechamiento del espacio (sobre todo cuando hay escasez del mismo), es perfectamente posible colocar los lechos separados entre sí por valores diferentes que se alternan por pares, por ejemplo una separación de unos dos metros en un caso y de un metro el otro, luego esto se repite, dos metros y nuevamente uno.  Permite un mejor aprovechamiento del terreno.

El compost estará listo para agregar las lombrices cuando ya no podamos distinguir los distintos materiales que le dieron origen, presentándose como una masa cuasi-homogénea.

La duración del proceso suele ser de 2 a 4 meses dependiendo de factores como la temperatura ambiente, la temperatura interna del compost, la humedad, la aireación, los materiales originarios, entre otros muchos posibles.

Al agregar lombrices, éstas procederán a transformar el compost en lombricompuesto, pudiendo utilizarse como indicador de la finalización del proceso el viraje de color del compost a negro azabache y por la similitud con el olor característico del mantillo de los bosques con árboles de hojas caducas. Dura unos 3 meses dependiendo de los mismos factores que inciden en la formación del compost, como así también la cantidad de lombrices que actúan en la pila.

Cuando todo finaliza, debemos retirar las lombrices para proceder a la comercialización de nuestro producto. La extracción de las mismas se realiza agregando compost o algún sebo en determinadas zonas de la pila donde se halla el lombricompuesto y las lombrices al percibir el alimento se amontonarán en esos lugares donde podremos extraerlas con mayor facilidad.

  • Poroso y desmenuzable
  • pH neutro o cercano a la neutralidad
  • Buena capacidad de retención hídrica
  • Color marrón oscuro característico
  • No se pueden reconocer los materiales iniciales
  • Temperatura no mayor a 35 grados
  • Sin olores desagradables
  • Es aceptado rápidamente por la lombriz

Como la formación del compost es microbiana, ésta requiere calor, humedad, oxígeno, carbono y nitrógeno. El exceso o la falta de alguno de estos componentes pueden llevarnos al fracaso de nuestro compost. Si no hay elevación de temperatura esto puede deberse a un exceso o defecto de la humedad, pudiéndose corregir por el humedecimiento o secado de la pila.

La baja aireación perceptible por el olor a ácido sulfídrico, metano o sulfuro de carbonilo, se resuelve mezclando bien la pila.

Si la relación C/N es alta como ocurre cuando se agregan grandes cantidades de aserrín o viruta al compost, se resuelve agregando materiales nitrogenados como pastos verdes o estiércoles, mientras que si la relación es baja sintiéndose olor a amoníaco, se resuelve agregando materia carbonada.

Resumiendo, las tareas a llevar a cabo según el diagnóstico a que lleguemos es:

  • Una masa demasiado húmeda, con charcos: horquillar y agregar material seco (fardo) que absorba el exceso de agua. Con una relación C/N alta se puede agregar un fertilizante que contenga nitrato de amonio o urea, no más de 20 Kg. por m3 de pila.
  • Fuerte olor a amoníaco: debe subirse la relación C/N con paja o regar o ambos. Con pH muy bajo agregar 1 kg de CO3 (carbonato de calcio) o SO4Ca (yeso) por cada m2 de pila.
  • Presencia de hormigueros o animales indeseables: remover las pilas para destruir los hormigueros, sebos, riego abundante. Cobertura de polietileno como prevención.
  • Olor a putrefacción, moscas y larvas: remover la pila, airearla, se puede agregar cama de pollo para volver a elevar la temperatura.

Los aspectos más importantes que deben tenerse en cuenta durante el compostaje son: aireación periódica de la pila y riego frecuente para lograr una humedad constante del 65 al 70%

a) Riego:

  • Por goteo: 3 horas cada 2 días.
  • Por aspersión: 2 horas cada 3 días variable de acuerdo al caudal.
  • Con mangueras: 1 riego por semana hasta el final.

No cabe duda que la permanente atención del proceso es el mejor indicador sobre la periodicidad de los riegos, que en el caso señalado son tentativos, ya que éstos han de variar según las temperaturas reinantes, grado de humedad ambiente, periodo del año, etc.

b) Remoción

  • 1 vez por semana.

c) Controles Sanitarios:

  • Ventilación: puede hacerse por caños perforados o ladrillos conformando un túnel.
  • Registro de temperatura
  • Registro de ph
  • Registro de humedad

A continuación se describirá un método práctico para la realización del compost:

  • En primer lugar se realiza una pila que se comienza con una capa de unos 20 cm de residuos carbonados, tales como hojas secas, paja, heno, aserrín, papel picado etc.
  • Luego esto se recubre con otra capa de unos 10 cm. de material nitrogenado tal como pasto verde, malezas, residuos de plantas de jardín, estiércoles (pueden utilizarse también cáscaras de frutas, residuos de hortalizas, etc.)
  • Este patrón de capas de 20 y 10 cm se repite hasta una altura de 1.50 m aproximadamente, pudiendo intercalarse finas capas de tierra entre ellas. Esta correspondencia entre las capas es necesaria para mantener la relación C/N entre 26 y 35 que es el rango óptimo para obtener una buena descomposición.

Cada capa es humedecida de manera que no llegue a estar saturada. La pila puede cubrirse con heno, suelo, o tejido media sombra para acelerar el proceso.

En el caso de hacerlo con plásticos, la pila debe airearse regularmente quitándolo unos minutos cada semana aproximadamente, pues este material no permite que la liberación de gases producto de la descomposición se lleve a cabo libremente.

En este caso es conveniente recordar lo señalado anteriormente de que los plásticos transparentes pueden darnos algunos grados más de temperatura que los negros. Esto puede ser de gran importancia para los meses fríos en caso de ecosistemas con climas rigurosos.

  • Puede colocarse también el plástico en el fondo de la pila, lo que evita la pérdida de los lixiviados (líquidos provenientes del riego) que se insumen en la tierra con lo que se ahorra agua y se mantiene mejor la humedad. Por otra parte, también se reduce el riesgo de ataque de hormigas. En estos casos debe cuidarse que no se forme barro en el fondo de la pila, lo que conspiraría contra un buen proceso de compostaje.
  • Si los materiales están picados se acelera la maduración del compost (en este caso debe mantenerse siempre un porcentaje de material grueso, 10% aprox.. que facilita la aireación evitando que la pila se compacte demasiado con el consiguiente riesgo de anaerobiosis). Si se mezcla la pila varias veces también se acelera la formación del compost, siempre y cuando no baje demasiado la temperatura del mismo.
  1. Microorganismos
  2. Humedad
  3. Aireación
  4. Temperatura
  5. Relación Carbono/Nitrógeno
  6. Tamaño de partículas
  7. pH

1. Microorganismos

La conversión de la materia orgánica cruda biodegradable en materia orgánica humificada es un proceso microbiológico, llevado a cabo por microorganismos: bacterias, hongos y actinomicetes.

En el comienzo de la descomposición, en la fase mesófila aerobia, predominan bacterias y hongos productores de ácidos. Al aumentar la temperatura y pasar a la fase termófila predominan bacterias, actinomicetes y hongos termófilos y termotolerantes. Las poblaciones microbianas se ubicarán según el oxígeno disponible en la masa. Los microorganismos que pueden protegerse encapsulándose o formando esporas pueden soportar temperaturas de hasta 75°C o más.

Pasando la fase termófila, el compost va perdiendo calor retornando a la fase mesófila, generalmente más larga y efectiva que la primera, terminando en la fase criófila, cuando la temperatura es igual a la del ambiente. En esta podemos observar una variada fauna saprófita: hormigas, ciempiés, gusanos blancos, etc. todos éstos, indicadores de la finalización del compost.

Residuos muy pajosos y/o pobres en microorganismos, pueden compostarse si los impregnamos con algún inoculante (microorganismos) de estiércoles animales, residuos domiciliarios, tortas oleaginosas etc. entrando en degradación inmediata por el doble efecto que causa la inoculación y la regulación de la relación C/N.

En condicionesque sean favorables, los microorganismos autóctonos se multiplican rápidamente, especialmente con buena aireación y humedad.

Los hongos y actinomicetes, menos exigentes en humedad, abundan en los primeros 5-15 cm. y se visualizan en forma de finos hilos de color blancuzco en forma de tela de araña.

Las bacterias generalmente se ubican en el centro de la pila, con temperaturas de 60-70°C, ocurriendo allí las mayores alteraciones de la materia orgánica.

Los hongos y actinomicetes descomponen los materiales mas resistentes de la celulosa, hemicelulosa, lignina y quitina (material constituyente del esqueleto de los insectos)

2. Humedad

El agua es imprescindible para las necesidades fisiológicas de los microorganismos.

Saturando una masa de materia orgánica, los espacios vacíos se inundarán con agua sin lugar para el aire. Inversamente, deshidratándola, todos los espacios vacíos serán ocupados por el aire.

Cuanto más finas sean las partículas del compost, mayor será la retención del agua, así por ej. la turba llega a absorber más del 90% de agua; los estiércoles pueden retener de 70 a 80% de agua, las cáscaras, pajas y otros materiales fibrosos y groseros, retienen de 60 a 70% de agua. A medida que el material se va humificando va aumentando la retención de agua.

La materia orgánica en compostaje tiene una humedad óptima cercana al 60%, (si un puñado de material se aprieta fuertemente y apenas gotea la humedad es la correcta) siendo sus límites entre 70 y 40%.

Materiales más gruesos y fibrosos pueden iniciar el proceso de descomposición aerobio sin peligro de anaerobiosis con porcentajes de humedad superiores al 60%. Los materiales más finos tienen tendencia a compactarse necesitando que la humedad inicial para el compostaje sea inferior al 60%.

El riego debe darse por aspersión para permitir que la masa absorba el agua evitando así el pasaje rápido del líquido y formación de barro en la parte inferior de la pila.

Debajo del 12% de humedad, cesa prácticamente la actividad microbiológica tornándose el proceso de descomposición muy lento. Por ello es muy importante el control de la humedad. La acción del viento es más eficiente para la extracción de humedad que la acción del sol.

Se recomienda realizar el compostaje en terrenos altos que evite anegamientos en épocas de lluvias, sobre todo hacia el final del proceso (la granulometría es más fina y absorbe más agua).

En estiércoles puros se retiene demasiada humedad, mientras que con mucha paja no hay humedad suficiente. Habrá que regar, remover y eventualmente agregar materiales más finos. Ayuda a conservar la humedad la cobertura de la pila con polietileno negro de 100 micrones (en estos casos el plástico dificulta la diseminación de los vapores propios del compostaje).

3. Aireación

Necesitamos que proliferen microorganismos aeróbicos que requieren oxígeno para efectuar su metabolismo. Si proliferan los anaeróbicos, tendremos sus productos metabólicos como metano, ácido sulfídrico y amoníaco con su resultado de malos olores, moscas y sus larvas.

No se aconseja que la altura de la pila exceda 1,2-1,5 m. pues el peso conduce a la compactación y tiende a la anaerobiosis. De aquí que sea tan importante la remoción periódica con horquilla.

Se arma la pila sobre tubos perforados, palos, postes o ladrillos separados. Así, moviendo dicha estructura, mejora la aireación la aireación y drenaje logrando con la presencia de aire una rápida oxidación de la materia orgánica que permite una transformación sin malos olores ni presencia de moscas.

El consumo de oxígeno depende de la temperatura, humedad, granulometría, composición química de la masa y de las remociones decididas en función de las temperaturas muy altas.

Realizando un corte transversal en la pila, vemos una gran variación en los porcentajes de aire en los espacios vacios. Las camadas externas contienen un 18-20% de aire. Hacia el interior de la pila y a los 60 cm de profundidad el tenor de aire baja hasta el 0,5-2%.

En el compostaje artesanal, donde todo el trabajo se realiza en forma manual, se utilizan varios métodos para oxigenar el medio, pero el más difundido es el de la remoción periódica de la pila.

Si la pila es grande y compacta tenderá a la anaerobiosis. Si la altura es la recomendada (0,7 m) poco densa y con una pequeña cantidad de materiales groseros que producen alta porosidad, los cambios se darán con rapidez, la temperatura se elevará fácilmente y el tiempo de compostaje será menor.

La relación ideal entre porosidad y contenido de agua para residuos a compostar está entre 30 y 35% de porosidad y un 55-65% del peso en agua.

4. Temperatura

El metabolismo de los microorganismos aerobios es exotérmico existiendo cierto grupo de microorganismos que tienen una franja de temperatura óptima de desenvolvimiento.

La actividad microbiana del material trabajado en grandes montones puede elevar la temperatura hasta los 80°C. Estas temperaturas son deseables para destruir larvas, huevos, semillas de malezas y muchos organismos patógenos, aunque no es bueno tener muchos días de temperaturas de 75ºC por la pérdida de nitrógeno, restricción del número de microorganismos, pueden insolubilizarse proteínas solubles en agua y provocar desprendimiento de amonio, sobre todo si la relación C/N es baja. En este caso se agrega material rico en carbono, como el material leñoso o se puede bajar la altura de la pila para disipar calor.

Si por el contrario la pila no eleva la temperatura, agregamos material rico en nitrógeno como los estiércoles (la cobertura con polietileno ayuda a mantener elevada la temperatura).

Es interesante la experiencia llevada a cabo en Nicaragua, donde pudieron comprobar que los plásticos transparentes logran un aumento mayor de la temperatura que el negro, aunque este último favorece la reproducción de las lombrices mejor que el anterior.

Tales datos nos sirven para tomar la decisión sobre qué cobertura colocar, según sea la pila de compost o en cunas con lombrices, es decir, según qué es lo que queremos priorizar en nuestro emprendimiento.

La temperatura óptima de descomposición se ubica en los 50-70°C (60°C es lo más indicado)

Clasificación de bacterias según rango óptimo de temperaturas

Temp. Mínima

Temp. óptima

Temp. Máxima

Termófilos

25-45°C

50-55°C

85°C

Mesófilos

15-25°C

25-40°C

43°C

La temperatura ambiente no tiene mucha influencia sobre la temperatura de la pila (salvo en casos extremos). En días fríos la masa permanecerá caliente desprendiendo calor y vapor de agua que se percibirá fácilmente. Las pérdidas de calor son proporcionales a las dimensiones de la pila: más largas y altas tienen superficie de exposición menor proporcionalmente y mayor relación volumen/área, perdiendo menos calor que los montones pequeños.

El desenvolvimiento de la temperatura está relacionado con varios factores:

  • Contenido de proteínas
  • Relación C/N baja eleva más la temperatura
  • Materiales molidos con granulometría fina, elevan menos la temperatura

La figura anterior muestra un patrón de temperatura que parte de la temperatura ambiente, pasa rápidamente a la fase mesófila, sube a termófila formando un plateau al mantenerse un tiempo más largo que la fase anterior. Prosiguiendo la descomposición sin déficit de humedad y oxígeno, la temperatura bajará a un nuevo plateau de mayor período de tiempo que el anterior.

En unos 100-120 días se llega a la total humificación de la materia orgánica, finalizando el período de compostaje donde la temperatura bajará aprox. a la del ambiente. Como la temperatura varía según la profundidad de la pila, se recomienda medirla siempre a la misma altura (unos 40 cm) y en diferentes puntos para tener un valor promedio.

Para bajar la temperatura se recomienda regar el compost en forma de lluvia fina, removerlo, ambas acciones conjuntas o reducir la dimensión de la pila. Cuando el compost se encuentra en proceso de descomposición la temperatura bajará por efecto de las remociones. En unas 6-12 horas podría recuperar el calor que poseía con anterioridad.

No es aconsejable remover el compost frecuentemente de modo que no pueda recuperar la temperatura perdida pues, alterando la faja de calor, perjudicaríamos a los microorganismos dominantes.

En la práctica, inicialmente tenemos un rápido calentamiento de la pila a medida que los microorganismos se multiplican.

Al pasar los 40ºC la flora mesófila es reemplazada por la termófila, lo que ocurre en dos o tres días. La temperatura llega hasta unos 70ºC, descendiendo luego hasta la temperatura ambiente. En pilas más pequeñas se observa un mayor contraste entre las temperaturas en el centro y en la superficie de la pila.

5. Relación Carbono/Nitrógeno

En términos generales, los microorganismos absorben 30 partes de C por cada parte de N. El carbono se utiliza como fuente de energía siendo 10 partes incorporadas al protoplasma celular y 20 partes eliminadas como dióxido de carbono (CO2). Esta razón de 10:1 que tienen los microorganismos es la misma que tiene el humus.

Un ejemplo ayudará a comprender: supongamos que 100 Kg de materia orgánica tengan aproximadamente 52% de carbono; los microorganismos asimila 1/3 de él en sus protoplasmas, incorporarando 17,3 kg de carbono y eliminando 34,7 kg.

Como para la incorporación es necesaria la relación 10:1, para asimilar 17,3 kg de carbono hace falta 1,73 kg de nitrógeno. Si existe exceso de C en relación al N (relación C/N alta), el carbono se consume o elimina en cuanto que el nitrógeno va siendo reciclado, pues los microorganismos que mueren cederán el nitrógeno de sus esqueletos. De ese modo, un material con una relación 80/1, por descomposición va perdiendo carbono. A medida que el nitrógeno se recicla, baja la relación hasta llegar a 10/1, cuando se estabiliza en forma húmica.

Cuando un compuesto orgánico con una relación C/N alta se aplica al suelo, sucede que los microorganismos utilizan el nitrógeno de los que mueren y también del suelo en donde se encuentra en forma nítrica y amoniacal procurando con ello reducir la elevada proporción de carbono en relación al nitrógeno. Se dice que existe hambre de nitrógeno, pues los microorganismos han utilizado el nitrógeno disponible para los vegetales.

Cuando el exceso de carbono fue eliminado, el material húmico estará siendo mineralizado de manera que el nitrógeno orgánico estará en formas inorgánicas solubles, estando en estos momentos disponible para las plantas.

La figura anterior muestra como ocurren las fases de descomposición, verificándose que la materia orgánica, con relación C/N igual a 60 dispondrá de 30 a 60 días para ser bioestabilizada. En el rango de 60 a 33 se inmovilizará nitrógeno, esto es, de las formas solubles nítricas y amoniacales a las formas orgánicas insolubles.

Para llegar a la bioestabilidad (de 33 a 17) pueden pasar 15-30 días y en este período los microorganismos no obtendrán nitrógeno del suelo, pero tampoco habrá mineralización de las formas orgánicas. El nitrógeno se devolverá a los vegetales a partir de una relación C/N de 17.

Los materiales orgánicos con elevada relación C/N pueden producir, al ser aplicados al suelo, deficiencias de nitrógeno con síntomas de clorosis, pudiendo llegar en los casos más extremos a la muerte de las hojas y del vegetal. Si esto ocurre, se recomienda aplicar un fertilizante nitrogenado por la vía más conveniente.

Si sucede el caso opuesto, relación C/N baja (5/1-10/1), común en residuos de frigorífico, los microorganismos eliminan el exceso de nitrógeno en forma amoniacal hacia la atmósfera.

Esto se acelera cuando se quiere compostar en breve plazo, realizando más aireaciones revolviendo, ya que el material llega a compactarse con mucha facilidad. El desprendimiento de amoníaco puede ser tan intenso que llega a sentirse su olor cada vez que se lo revuelve.

 

Cuando se tiene mucho residuo rico en proteínas se recomienda incorporar restos celulósicos para elevar la relación C/N hasta llegar a 33/1, aproximadamente (puede usarse viruta).

Se considera el rango 26-35 como el óptimo para un rápido y eficiente compostaje.

Relaciones bajas causan pérdidas prácticamente inevitables de nitrógeno amoniacal, en cuanto a las altas relaciones tornan el proceso más prolongado.

6. Tamaño de partículas

La descomposición puede ser acelerada por la molienda de los materiales porque permite mayor superficie de contacto facilitando la invasión microbiana.

7. pH

El pH inicial en las pilas de compost es ligeramente ácido (pH 6) como la savia y el líquido celular de muchas plantas. La producción de ácidos orgánicos causa su acidificación durante la etapa inicial de la maduración del compost, pero al aumentar la temperatura también aumenta el pH, estabilizándose en valores de 7.5 y 8.5

Resumiendo, podemos encontrar cuatro etapas en el compostaje:

  • Criófila: hasta 35º C. Dura entre 4 o 5 días.
  • Mesófila: entre 35º y 45ºC. Actúan hongos y bacterias mesófilas. El pH es de 7 o menos. Dura de 5 á 10 ó 12 días más.
  • Termófila óptima: 70ºC. Cuando la temperatura es mayor a 70–75ºC los microorganismos se inactivan, acarrea pérdida de nitrógeno, libera oxígeno y los microorganismos mueren. Sostenida entre 50º y 70º grados se rompen las cadenas proteicas y se eliminan los microorganismos patógenos. A 70º hay fermentación y no hay oxidación, actúan bacterias y hongos como los actinomicetes que se presentan como ceniza. El pH es mayor de 7 hasta 8. Dura de 10 a 20 días. La última etapa es llamada bioestabilización: luego que se voltea (a veces no se necesita más que un solo volteo) se reinician la 2º y 3º etapas hasta que la temperatura baja y al voltear nuevamente se estabiliza.
  • Bioestabilizacion: El pH es alrededor de 7 y la temperatura entre 10 y 20ºC máximo. Aparece fauna saprófita como hormigas, ciempiés, bichos bolita, arañas y colémbolos. Son esperables y juzgan el desarrollo del proceso. La actividad microbiana eleva la temperatura de la pila hasta 80ºC, (óptima 65º), destruyendo larvas, huevos y organismos patógenos indeseables.

Debemos recordar que la granulometría de 1 a 5 cm permite buena absorción y oxigenación (2/3 de agua, 1/3 de aire). También tenemos que confeccionar desde el inicio la curva de temperatura en distintos puntos y a una misma profundidad, obteniendo así un valor promedio.

La propia experiencia nos demostró que los tiempos previos para la siembra de lombriz varían entre los 25 y los 45 días.

Relación C/N: Es importante conocer las relaciones de C/N (Carbono/Nitrógeno) de todos los residuos para evitar demoras y controlar la calidad.

Con una relación C/N alta superior a 50/1 (mezclas con viruta) demora 5-6 meses y con relación baja de C/N de 10/1 (excremento de gallina) también se dilata pues los microorganismos no obtienen el carbono para iniciar el proceso que incorpora 1/3 a su cuerpo y elimina los 2/3 sobrantes en forma de dióxido de carbono.

El nitrógeno de las proteínas puede perderse en forma gaseosa (amoníaco). Para evitarlo debe mantenerse la masa húmeda (con agua se forma hidróxido de amonio reteniendo nitrógeno). También se puede usar sulfato de calcio (yeso) formando sulfato de amonio (forma retenida de nitrógeno) y carbonato de calcio. Otra forma es emplear tierras arcillosas, como tierra diatomea.

Es importante elevar la relación C/N con agregado de pajas (celulosa). Si trabajamos con estiércoles frescos (alto contenido de agua y celulosa), no mejoraremos ni química ni físicamente los suelos.

Si incorporamos estiércol sin compostaje previo, observaremos una baja inmediata de nitrógeno asimilable por las lombrices, ya que los microorganismos los utilizan para su reproducción.

Debemos tener presente que los animales adultos producen estiércol de mejor calidad al eliminar más nutrientes.

La relación C/N ideal para comenzar el compostaje es de 30 a 40/1.

2/3 del Carbono se elimina como sobrante por los microorganismos y el tercio restante se inmoviliza como parte del cuerpo microbiano dando una relación de 10/1, óptima para alimentar lombrices.

Un activador del compost es la cama de pollo: acelera la descomposición y evita la fermentación pútrida por ser una sustancia con acción microbiana intensa; hongos y elementos nutritivos y el sulfato de amonio: 300 gr. o superfosfato: 150 gramos cada 2 m2 de pila de 0,70 m de altura.

El proceso de compostaje es la transformación biológica de los residuos orgánicos llevada a cabo por los microorganismos debido a la cual, elementos químicos como el N, C, K, P y S de compuestos complejos se liberan; sustancias como la celulosa y la proteína entre otras se degradan en otras más simples sin olor desagradable y así son ingeridas por las lombrices.  La descomposicion en general se logra de 2 formas:

Aeróbica o rápida, con liberación de CO2, H2O y energía calórica – (1gr. de glucosa = 500 Kcal.)

Anaeróbica o lenta, libera SH2, CH4, NH3, poco CO2, menos energía – (1gr. de glucosa = 26 Kcal.)

En la naturaleza todo se recicla: lo que sale de la tierra torna como excremento, hojas, cadáveres, etc. Un sinfín de descomponedores, desde el buitre, pasando por las lombrices hasta millones de microorganismos, cierran el ciclo manteniendo la fertilidad del suelo. Así son posibles prodigios de fertilidad como las selvas tropicales, situadas sobre tierras sumamente frágiles.

La mal llamada revolución verde de los años 50-60 y la teoría de Liebig de la nutrición mineral, media verdad que reducía la alimentación de las plantas a nitrógeno, fósforo y potasio ignorando la importancia de los oligoelementos y microorganismos, dio pie al desaforado desarrollo de la industria de los fertilizante químicos y al abandono progresivo de los abonos orgánicos.

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.